

Toward Coherent Object Recognition and Scene Layout Understanding

Silvio Savarese – University of Michigan at Ann Arbor

Byung Kim

Wongun Choi Min Sun

Ying-ze Bao

Ryan Tokola

Jingen Liu

28 Dicembre 2010

Yu Xiang

Anush Mohan Shyam Kumar

Fisher Yu

Geometrically "rich" scene understanding

Object categorization

Scene classification

Pattern recognition

Object categorization

Scene classification

Pattern recognition

0	1	2	3	4
0	1	2	3	J
0	1	X	3	ч

Joint semantic interpretation and geometric reconstruction of the scene

Camera localization

30

3D object & scene modeling

3D geometry

Object categorization

Scene classification

Pattern recognition

0	1	2	3	4
0	1	2	5	ч
0	1	X	3	4
-			-	

Joint semantic interpretation and geometric reconstruction of the scene

- •Hoiem et al. 06-10 •Gould et al. 09 •Hedau et al. 09
- Gupta et al, 10
- Bao, Sun, Savarese 10
- Sun, Bao, Savarese 10

Camera localization

3D object & scene modeling

3D geometry

Object categorization

Scene classification

Pattern recognition

0	1	Z	3	4
0	1	2	5	ч
0	1	λ	3	ч

Joint semantic interpretation and geometric reconstruction of the scene

- Ess et al, 2009
- Pellegrini et al , 2010

- Choi, Shahid, Savarese, 2009
- Choi & Savarese, 2010

3D object & scene modeling

3D geometry

How can we achieve all of this?

Intuition: Objects in the 3D physical space show consistent geometrical properties within the same view and across views

Monitor x, y location in the image Bounding box/ scale Azimuth: 5 degrees Zenith: 15 degrees 3D shape

mouse

Theorem: supporting plane orientation, camera pose and focal length can be estimated from zenith pose of at least 3 (non-collinear) objects

keyboard

Intuition: Objects in the 3D physical space show consistent geometrical properties within the same view and across views

Our objectives

- Multi-view models for object categorization and 3D attribute estimation
- Coherent object detection and scene layout estimation

- Detect objects under generic view points
- Estimate object pose
- General and work for any object category

- Detect objects under generic view points
- Estimate object pose
- General and work for any object category

Current paradigm

- No information is shared
- •No sense of correspondences of parts under 3D transformations
- Non scalable to large number of categories/view-points

A new recent paradigm

- •Thomas et al. '06
- Kushal, et al., '07
- Savarese et al, 07, 08
- Chiu et al. '07 Hoiem, et al., '07

• Yan, et al. '07

• Liebelt et al., '08

• Xiao et al.,'08

• Sun et al 09

- I., '08 Liebelt et al., '08
 - Xiao et al.,'08
 - Arie-Nachimson & Basri, '09

Sparse set of interest points or parts of the objects are linked across views.

A new recent paradigm

- Canonical parts captures view invariant diagnostic appearance information
- 2d ½ structure linking parts via weak geometry
- Parts and relationship are modeled in a probabilistic fashion
 - Parameters are learnt so as to maximize detection accuracy

Key contributions

Representation:

Leadeing: representation on the viewing sphere:

- Model object appearance and shape from any position on the viewing sphere
- Enable view synthesis from novel view points
- Multi-view generative part-based model
 - Object is represented by collections of parts
 - Parts are linked across views
 - Parts and relationships are probabilistic

Semi-supervised learning

- No part or pose labels are required
- Incremental:
 - Training images can be provided sequentially

Dense representation on view-sphere

- Triangle T
- Parameter S

Multi-view generative part-based model

Multi-view generative part-based model

$P(X, Y, T, S, R, \pi) \propto P(\pi | \alpha_T)$

 $\prod_{n} \{ P(X_n | \theta_{TR_n}(S), A) P(Y_n | \eta_{TR_n}(S)) P(R_n | \pi) \}$

Exact Inference is intractable! We use Variational EM:

 $\ensuremath{\alpha}$ = Part Prop. Prior $\pi \sim Dir(\ensuremath{\alpha})$ $R \sim Mult(\ensuremath{\pi})$ $Y_n \sim Mult(\ensuremath{\eta})$ $X_n \sim N(theta)$ $\ensuremath{\eta}$ = Part Appearance $\ensuremath{ heta}$ = Part Location/shape Yn=Codeword

Xn=Location

 $X_n \leftarrow A \cdot X$ Image

Key contributions

•Representation:

- Dense representation on the viewing sphere:
 - Model object appearance and shape from any position on the viewing sphere
 - Enable view synthesis

• Multi-view generative part-based model [Sun et al cvpr 09]

- Object is represented by collections of parts
- Parts are linked across views
- Parts and relationships are probabilistic

•Learning:

- Semi-supervised learning
 - no part or pose labels are required
- Incremental:
 - Training images can be provided sequentially

Incorporating geometrical constraints

- Parts are linked across views
- Part topology is preserved under view point transformations

Incorporating geometrical constraints

Incremental learning

- Enable unorganized and on-line collection training images
- Increase efficiency in learning (no need large storage space)

Incremental learning

- Assign new training image to a triangle of the view sphere
- Evidence of training image is used to update model parameters
- Re-estimate sufficient statistics in a iterative fashion

Evolution of learnt parts

Examples of learnt part-based models

Examples of learnt part-based models

Bicycle

Examples of learnt part-based models

Travel iron

Detection and pose estimation

- **Detect** objects from any viewing angles
- Accurate pose estimation
- Synthesize (generate) object shape and appearance from novel views

- PASCAL 2006 dataset
- 3D Object Dataset

Bicycle

Travel Iron

Car

Detection - Pascal 2006 dataset

3D Object Dataset [Savarese et al 07]

Poses

8 azimuth angles
3 zenith
3 distances

~ 7000 images!

Detection

3D object dataset

[Savarese et al 07]

- Sun et al, ICCV 2009
- Su et al, CVPR
- Savarese et al, ICCV '07

Viewpoint Classification

Viewpoint Classification

3D object dataset

[Savarese et al 07]

Failure example

Category: car Azimuth = 225^o Zenith = 30^o

Predicting object appearance from novel views

Predicting object appearance from novel views

[For natural scenes, see Hoiem et al 07; Saxena et al 07] Thomas et al 08 Cremer et al 09

Predicting object appearance from novel views

Outline

- Multi-view models for object categorization and 3D attribute estimation
 - 3D Pose
 - 3D shape
- Coherent object detection and scene layout estimation

Depth-Encoded Hough Voting for coherent object detection and shape recovery

M. Sun, B. Xu, G. Bradski, S. Savarese, ECCV 2010

A new class of detectors:

input:

- single image;
- rough 3D location (optional)

Output:

- localize object;
- 3D shape

LH

Outline

- Multi-view models for object categorization and 3D attribute estimation
 - 3D Pose
 - 3D shape
- Coherent object detection and scene layout estimation

Toward coherent object detection and scene layout understanding

Y. Bao, M. Sun, S. Savarese, CVPR 2010

Min Sun

Ying-ze Bao

•Recognizing objects can help estimate the layout

•Estimating the layout can help reinforce the existence of the objects

Our Contributions

- Only use object detections to estimate 3D surface
 - No scene appearance model needed

•Hoiem et al. 06-10 •Gould et al. 09

- -Estimate focal length from single image
- -General camera pose model
 - camera tilt, camera in-planar rotation
- Hoiem et al. 06-10Gould et al. 09Hedau et al. 09
- No assumptions on camera height

1. Layout: most likely supporting surface 3D locations & orientations • camera pose & focal length • 3D objects location

2. Improve detection: remove false alarms, discover missed detections

Joint inference process

Theorem: supporting plane orientation, camera pose and focal length can be estimated from zenith pose of at least 3 (non-collinear) objects

3D Encoded Detector

Modified from Sun et. al. ECCV'10

Labelme dataset

Outline

- Multi-view models for object categorization and 3D attribute estimation
- Coherent object detection and scene layout estimation
 - From single image
 - From videos

Joint multi-target tracking and camera motion estimation from videos W. Choi & K. Shahid & S. Savarese WMC 2010

W. Choi & K. Shahid & S. Savarese WMC 201 W. Choi & S. Savarese , ECCV 2010

Wongun Choi

- Monocular cameras
- Un-calibrated cameras
- Arbitrary motion
- Highly cluttered scenes
 Occlusion
 - Background clutter

Joint camera and object track estimation

•Choi & Savarese, ECCV 2010

 $P(\Omega_t | \chi^t) \propto P(\Omega_t, \chi_t | \chi^{t-1}) = P(\chi_t | \Omega_t) \int P(\Omega_t | \Omega_{t-1}) P(\Omega_{t-1} | \chi^{t-1}) d\Omega_{t-1}$

 Ω : set of state variables X : set of observationse

Interaction between Targets

- Interaction is modeled as a pair-wise MRF.
- Two exclusive models
 - Group motion vs. repulsion
 - Hidden variable to find the "mode" (hypothesis for the underlying interaction)

Object detection and tracking

Object categorization

Modeling human-human & human-object interaction

- Gupta et al 2009
- Yao and Fei-Fei 2010
- Desai et al 2010
- Lan et al 2010
- Choi et al , 2009
- Choi & Savarese, 2010

3D object & scene modeling

Object semantic

Object detection and tracking

Object categorization

Object semantic

Modeling human-human & human-object interaction

- Choi et al , 2009
- Choi & Savarese, 2010

3D object & scene modeling

Image: Second Secon

Learning spatial-temporal relationship among humans W. Choi & K. Shahid & S. Savarese , CVPR 2011, under review W. Choi & S. Savarese , under preparation, 2011

Learning spatial-temporal relationship among humans

W. Choi & K. Shahid & S. Savarese , CVPR 2011, under review W. Choi & S. Savarese, under preparation, 2011

Learning spatial-temporal relationship among humans W. Choi & K. Shahid & S. Savarese WMC 2009 W. Choi & K. Shahid & S. Savarese , CVPR 2011, under review

Crossing – Talking – Queuing – Dancing – jogging

Learning spatial-temporal relationship among humans W. Choi & K. Shahid & S. Savarese WMC 2009 W. Choi & K. Shahid & S. Savarese , CVPR 2011, under review

Crossing – Talking – Queuing – Dancing – jogging

Learning spatial-temporal relationship among humans W. Choi & K. Shahid & S. Savarese WMC 2009 W. Choi & K. Shahid & S. Savarese , CVPR 2011

W. Choi & K. Shahid & S. Savarese WMC 2009W. Choi & K. Shahid & S. Savarese , CVPR 2011, under reviewW. Choi & S. Savarese, under preparation, 2011

Conclusions

- Joint recognition and recognition is critical
- Leverage multi-view models for object categorization and 3D attribute estimation.
 - Pose estimation from a single view
 - 3D shape from a single view
- Models for coherent object detection/ tracking and scene 3D layout estimation
 - From single images
 - From videos

Thank you

FORD

GigaScale Systems Research Center (GSRC)

ARO ARMY

Probabilistic Formulation

 $P(\Omega_t | \chi^t) \propto P(\Omega_t, \chi_t | \chi^{t-1}) = P(\chi_t | \Omega_t) \int P(\Omega_t | \Omega_{t-1}) P(\Omega_{t-1} | \chi^{t-1}) d\Omega_{t-1}$

Probabilistic Formulation

Interaction between Targets

- Interaction is modeled as a pair-wise MRF.
- Two exclusive models
 - Group motion vs. repulsion
 - Hidden variable to find the "mode". (hypothesis for the underlying interaction)

Posterior Probability

 $P(\Omega_t | \chi^t) \propto P(\Omega_t, \chi_t | \chi^{t-1}) = P(\chi_t | \Omega_t) \int P(\Omega_t | \Omega_{t-1}) P(\Omega_{t-1} | \chi^{t-1}) d\Omega_{t-1}$ $P(\chi_t | \Omega_t) = P(X_t, Y_t | Z_t, \Theta_t) P(\tau_t | G_t, \Theta_t)$ $P(\Omega_t | \Omega_{t-1}) = P(Z_t | Z_{t-1}) P(\Theta_t | \Theta_{t-1}) P(G_t | G_{t-1})$

- Challenges
 - Nonlinear projection.
 - Pair-wise MRF for interaction. (non-gaussian motion model)
 - Hypothesis variables for detection and ground features
- Not able to apply analytical inference algorithm.